Lambert series of logarithm, the derivative of Deninger's function \(R(z)\), and a mean value theorem for \(\zeta \left (\frac{1}{2}-it\right)\zeta '\left (\frac{1}{2}+it\right)\) (Q6633509)

From MaRDI portal





scientific article; zbMATH DE number 7939363
Language Label Description Also known as
English
Lambert series of logarithm, the derivative of Deninger's function \(R(z)\), and a mean value theorem for \(\zeta \left (\frac{1}{2}-it\right)\zeta '\left (\frac{1}{2}+it\right)\)
scientific article; zbMATH DE number 7939363

    Statements

    Lambert series of logarithm, the derivative of Deninger's function \(R(z)\), and a mean value theorem for \(\zeta \left (\frac{1}{2}-it\right)\zeta '\left (\frac{1}{2}+it\right)\) (English)
    0 references
    0 references
    0 references
    0 references
    6 November 2024
    0 references
    Lambert series are defined by \N\[\N\sum_{n\geq1}a(n)\frac{q^{n}}{1-q^{n}}=\sum_{n\geq1}a(n)\frac{1}{e^{ny}-1}=\sum_{n\geq1}(1*a)(n)e^{-ny},\N\]\Nwhere \(q=e^{-y}\) with \(\Re( y)>0\) and \(a(n)\) is an arithmetic function with \(\sum_{d\mid n}a(d)=(1*a)(n)\) as the Dirichlet convolution.\N\NIn this paper under review, the authors give in Theorem 1.1 an explicit formula for the Lambert series of logarithm \(\sum_{n\geq1}\log(n)\frac{1}{e^{ny}-1}\) in terms of the function \(\psi_{1}(z)\) for all \(z\in{\mathbb D:=\mathbb {C}\backslash_{\{x\in{\mathbb{R}/x\leq0\}}}}\) which is defined by \N\[\N\psi_{1}(z):=-\gamma_{1}-\frac{\log z}{z}-\sum_{n\geq1}\left(\frac{\log(n+z)}{n+z}- \frac{\log n}{n+z}\right)\N\]\Nwith \(\gamma_{1}\) is the first Stieltjes constant. In Theorem 1.2, they state an asymptotic formula for the above Lambert series of logarithm which has an application in the theory of moments (see Theorem 1.3). Actually, as \(\delta\to0\),\ \(|\arg(\delta)|<\pi/2\), one has \N\begin{align*} \N\int_{0}^{\infty}\zeta\left(\frac{1}{2}-it\right) \zeta'\left(\frac{1}{2}+it\right)e^{-\delta t}dt&=&-\frac{1}{4\sin(\delta/2)}\left(\log^{2}(2\pi\delta)+\frac{\pi^{2}}{\delta}-\gamma^{2}\right)\\ &&+\sum_{k=0}^{2m-2}(d_{k}+d'_{k}\log(\delta))\delta^{k} +O\left(\delta^{2m-1}\log(\delta)\right), \N\end{align*}\N where \(d_{k}\) and \(d'_{k}\) are effectively computable constants and the constant implied by the big-\(O\) depends on \(m\).
    0 references
    Lambert series
    0 references
    Deninger's function
    0 references
    mean value theorems
    0 references
    asymptotic expansions
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers